抽屉原理
发布时间:2019-11-30 17:44:50 点击:
抽屉原则一:
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。 例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况: ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。 抽屉原则二: 如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 理解知识点: [X]表示不超过X的最大整数。 例[4.351]=4;[0.321]=0;[2.9999]=2; 关键问题: 构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。 |