首页 >> 高中>> 威文 ● 高一>> 学习资料

学习资料

基本初等函数

发布时间:2015-11-27 10:34:02    点击:

指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 
如图所示为a的不同大小影响函数图形的情况。
在函数y=a^x中可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
   同时a等于0一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点
(8) 显然指数函数无界。 
(9) 指数函数既不是奇函数也不是偶函数。
例1:下列函数在R上是增函数还是减函数?
QQ截图20140813141157.png 

⑴y=4^x
因为4>1,所以y=4^x在R上是增函数;
⑵y=(1/4)^x
因为0<1/4<1,所以y=(1/4)^x在R上是减函数
对数函数
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,其中a叫做对数的底数,N叫做真数。

真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,
底数则要大于0且不为1

对数函数的底数为什么要大于0且不为1

在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16)

对数函数的一般形式为 ,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1) 对数函数的定义域为大于0的实数集合。
(2) 对数函数的值域为全部实数集合。
(3) 函数总是通过(1,0)这点。
(4) a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5) 显然对数函数无界。


对数函数的运算性质:
如果a〉0,且a不等于1,M>0,N>0
,那么:
图片1.jpg

(1)log(a)(MN)=log(a)(M)+log(a)(N); 
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n属于R)



关于我们|招商加盟

首页 |个性化辅导 |教学模式 |课程设置 |金牌名师 |明星学员 |小学 |初中 |高中 |校区分布 |关注微博

欢迎您访问威文名师教育官网    冀ICP备15010654号

  • 个性化辅导
  • 教学模式
  • 课程设置
  • 艺考全托班
  • 中高考全托班
  • keywords:石家庄家教 石家庄家教