首页 >> 高中>> 威文 ● 高二>> 学习资料

学习资料

高二数学知识点:勾股定理公式及定理讲解

发布时间:2015-11-11 10:45:36    点击:

高二数学知识点:勾股定理公式及定理讲解

 

 

  一、经典证明方法细讲

  方法一:

  作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.

  ∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,

  ∴∠EGF=∠BED,

  ∵∠EGF+∠GEF=90°,

  ∴∠BED+∠GEF=90°,

  ∴∠BEG=180°―90°=90°

  又∵AB=BE=EG=GA=c,

  ∴ABEG是一个边长为c的正方形.

  ∴∠ABC+∠CBE=90°

  ∵RtΔABC≌RtΔEBD,

  ∴∠ABC=∠EBD.

  ∴∠EBD+∠CBE=90°

  即∠CBD=90°

  又∵∠BDE=90°,∠BCP=90°,

  BC=BD=a.

  ∴BDPC是一个边长为a的正方形.

  同理,HPFG是一个边长为b的正方形.

  设多边形GHCBE的面积为S,则

  ,

  ∴BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2

  方法二

  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.

  分别以CF,AE为边长做正方形FCJI和AEIG,

  ∵EF=DF-DE=b-a,EI=b,

  ∴FI=a,

  ∴G,I,J在同一直线上,

  ∵CJ=CF=a,CB=CD=c,

  ∠CJB=∠CFD=90°,

  ∴RtΔCJB≌RtΔCFD,

  同理,RtΔABG≌RtΔADE,

  ∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

  ∴∠ABG=∠BCJ,

  ∵∠BCJ+∠CBJ=90°,

  ∴∠ABG+∠CBJ=90°,

  ∵∠ABC=90°,

  ∴G,B,I,J在同一直线上,

  所以a^2+b^2=c^2



关于我们|招商加盟

首页 |个性化辅导 |教学模式 |课程设置 |金牌名师 |明星学员 |小学 |初中 |高中 |校区分布 |关注微博

欢迎您访问威文名师教育官网    冀ICP备15010654号

  • 个性化辅导
  • 教学模式
  • 课程设置
  • 艺考全托班
  • 中高考全托班
  • keywords:石家庄家教 石家庄家教