高二数学知识点:勾股定理公式及定理讲解
发布时间:2015-11-11 10:45:36 点击:
高二数学知识点:勾股定理公式及定理讲解一、经典证明方法细讲 方法一: 作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P. ∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD, ∴∠EGF=∠BED, ∵∠EGF+∠GEF=90°, ∴∠BED+∠GEF=90°, ∴∠BEG=180°―90°=90° 又∵AB=BE=EG=GA=c, ∴ABEG是一个边长为c的正方形. ∴∠ABC+∠CBE=90° ∵RtΔABC≌RtΔEBD, ∴∠ABC=∠EBD. ∴∠EBD+∠CBE=90° 即∠CBD=90° 又∵∠BDE=90°,∠BCP=90°, BC=BD=a. ∴BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2 方法二 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB=∠CFD=90°, ∴RtΔCJB≌RtΔCFD, 同理,RtΔABG≌RtΔADE, ∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE ∴∠ABG=∠BCJ, ∵∠BCJ+∠CBJ=90°, ∴∠ABG+∠CBJ=90°, ∵∠ABC=90°, ∴G,B,I,J在同一直线上, 所以a^2+b^2=c^2 |
- 2019-12-09高二地理:关于可持续发展的基本原则
- 2019-12-09快速提高高中语文成绩的33个方法
- 2019-12-09高二语文写作指导:如何积累作文素材
- 2019-12-09高二物理重要知识点总结:电场
- 2019-12-09高二物理学习方法:听讲与自学相结合